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ABSTRACT 

Approximate expressions are obtained for the coherent radiation loss 

by electrons in a synchrotron in the presence of finite parallel plate metallic 

shields, such as the pole faces of the magnet* The results would seem to 

provide a useful interpolation between the two simple limiting cases of shield- 

ing by infinite plates and no shielding at all. 



ON THE SUPPRESSION OF COHERENT RADIATION BI ELECTRONS IN A SYNCHROTRON. 

INTRODOCTION 

As is well known, the coherent radiation loss by electrons in a 

synchrotron, although independent of energy, increases with decreasing bunch 

size as the (-U/3) power * . In some of the extremely high energy synchrotrons 

(l) L.I. Schiff, Rev. Sci. Inst. 17, 6 (19U6). See also eq. (23) below. 

reportedly under consideration, the bunching is likely to be sufficiently marked 

that the coherent radiation loss co\ild become serious. As i3 also well known, 

the coherent radiation has a spectrum mainly in the short wave radio and micro - 

wave regions and hence can be suppressed in part by the use of metallic shields^1; 

It is our purpose to extend some unpublished results of Schwinger'^', in which 

(2) J. Schwingor, On Radiation by Electrons in a Betatron, (19U5) unpublished. 

Our thanks ar2 given to L. Jackson Laslett who called this material to 

our attention. 

this radiation was calculated assuming the orbit to lie midway between two plane 

parallel sheets of metal of infinite extent, to the case in which these metallic 

sheets are finite, as would be the case, for example, if the shielding were 

produced by the pole .faces of the race track magnet itself. Our results, 

although necessarily rough, would seem to provide a useful interpolation 

between the two simple limits of shielding by infinite plates and no shielding 

at alle- 



2. 

ICgER RADIATED BT ONE ELECTRON 

W8 begin by writing an expression for the power P   radiated in the 

nth harmonic by an electron moving in the z - 0 plane in a circular orbit of 

radius R with angular frequency U) j    namely, 

Pn = Re 4inwe2 /    d(<p~<p>)  Qn(R,<p,e;    R,cp«,0) f l-P2eos (<p~q>« )| e"1*1^*1) 
~TT L J (1) 

where 3 »UJR/C.    In the above,  the Green's function Gn(r, cp,zj    r1, <p', z')» 

which is to be evaluated on the orbit as indicated,  is the outgoing wave solution 

(V2 + k2)  Gn = ~;fcril 5   (<9~<p»)     6  (z-z7) (2) 

with 

k   *nu)/c *nO/R. 

In addition,  Gn must satisfy appropriate boundary conditions if a metallic 

•shield, is present.   We consider three cases as follows: 

I.      No Shielding 

In this case Gn is just the free space Green's function G^ ' which, 

--Then evaulated on the orbit,  is given by 

2R|flin^2Bl) 

oirbs iitution into eq.  (l) yields,  after the angular integration is performed, 

u'lcs well known result^)* \h) 

'3)    G.A. Schott,  Electromagnetic Radiation,   (Cambridge Univ. Press,   Cambridge 

1912). 

(U)    J. Schwinger, Fhys. Rev, j£» 1912 (19U9).    Our starting point, eq.  (l), 

vdth G   given by eq. (3),  is essentially oq,  (III.?) of this reference. 

pn0) = n(JU#    [j*2 *£n(**fi) "*   ^-P2) /    «W*)  a*7 (4) 
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II. Infinite Parallel Plate Shields 

In this case Gfi must satisfy the boundary condition that it vanish on 

the metal plates. Taking these plates to be separated by a distance a, with the 

electron orbit midway between the plates, we thus require a solution of eq. (2) 

subject to 

Gn = 0;   z = ±a/2 (5) 

This function, which we denote by Gn , is easily derived^' and can be 

($)    See, for example, F.M. Morse and H. Feshback, Methods of Theoretical 

Physics (McGraw-Hill Book Co., N.Y., 19^3) Chapter 7, particularly p. 892, 

A detailed derivation is given in reference (2). 

expressed as 

Gn    (r,c&z; r',(jf),z')  = 

where , a 

"Ml J-^n ?(?+a/0) ^ (2tfa/2) «im(cp-<¥>') JjVnfJ ^Vnfy) 
(6) 

2 

=   Urfifa \$ =   K2 -  G»/a)*J        =   | (nQA)2 - (jrr/a)2 

and r.hero i%-    is the lesser of the two radii r and r',  rr   the greater of the two. 

Jubnti bution into or,  (1),   then yields after  oerformance of  the angular 

integration, 

J=J-1 "5 , . . . -^ 
V 

-.hero   the argument of all the cylinder functions is 

7njR =   | (n]3)2 - (jnR/a)2j   * 

Tie power radiated into the attenuated modes is of course zero s'nee for these 

rr->de3 the  irguments of the  cylinder functions,  and also  therefor^ the products 

*-n ^n»  become purely i 

contribute  to eq.   (7). 

'n <^n»  become purely imaginary.    Only those terms for which j "= ^~ consequently 



III. Finite Parallel Plate Shields 

Imagine now that the shielding plates of case II, instead of being 

infinite, extend from an inner radius R-^ to an outer radius R2 (with R,< R <R2 

of course) as would be the case if the pole pieces of the ring magnet itself 

wore the shielding plates. In this case, the Green's function in the region 

between the plates must satisfy appropriate (and very complicated) boundary 

conditions at the surfaces r « Rn and r = R? in addition to the boundary conditions 

of oq. (5)» These extra conditions can be satisfied only if a general solution 

of the homogeneous equations is added to the Green's function of eq. (6). 

Thus for this case we must have 

Gn s of + Fn (8) 

where we write Fn in the form * 

F -JLE i       sin^(Z+a/2) sinJ2 (z«+a/2)e
lm(^t) 

A»j^(7n/) + Baj42)(7njr) 

where the factor wr e'11'1  sin JE (z' + a/2) is included for convenience. The 
a 

important fact iu that Fn is a general solution of 

( V2 + kn
2) Fn = 0 

and satisfies eq. ($). The coefficients A^ and B^ are exactly determinable 

only upon consideration of an extr-moly difficult, if not insoluble, boundary 

value problem. However, F represents essentially reflected waves at the boundaries 

R. and R?, and hence these coefficient* can be roughly estimated /from physical 

arguments. In particular, we shall seek to stay on the safe side by looking for 

something like an upper limit to the power radiated. As a first stop, we 

assume that as far as the propagating modes are concerned, the power radiated 

is not lass than it would be for an infinite shield - i.e. - we set A., B„J = 0 

for propagating modes. It is then necessary only to consider the power radiated " 

u«bo the attenuated modes. A3 mentioned previously Gn   contributes nothing 

**or attenuated nodes and. only Fn enters.  Thus we have 

Pn.^ £" + Pn<
att) (10) 
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where Pn        is given by (7) and where 

Pn
att^ - Re 4incue2 p d(«p-q>») Fn(orbit)    l~e2ooa(<p~cp»)      e~im(qMp») 

-TT i- J (11) 

In order to evaluate eq. (11), we must estimate the remaining A .  and E .. 

The easiest way to do this is as follows. In any high energy synchrotron, the 

length Rp - R, and the plate separation a are very small compared to the orbit 

radius R. Thus the cylindrical waves behave very much like plane waves - i.e. - 

the 3essel functions can be replaced by their asymptotic values. To this 

approximation, a typical attenuated mode of Gn of eq. (8) has the form of 

attenuated plane waves emitted by the source plus waves reflected at the 

boundaries with amplitudes expressible in terras of a complex reflection 

coefficient of order of magnitude unity. The power transmitted in the attenuated 

modes is easily calculated in terms of such reflection coefficients and an 

"upper limit" estimated by choosing the phase of thaae reflection coefficients 

properly while setting their magnitudes equal to unity. The simple result is 

then the following: 

n — R   a J=1 3 TT J-nR/a  *      a ' 

J>na/7TR 

In obtaining this result, multiple reflections have been neglected and the 

argument *Yn.,R of the Bessel functions in eq. (8) has been approximated by 

iVJrtR/a), both being pernds sable for highly attenuated modes. The various 

terms which appear are then easily identified. The factor (nme /R)(lirrR/a) 

is the same normalization factor as in eq. (7), the factor (2/iT)(a/;)riR) arises 

from the asymptotic expansion of the Bessel functions, while the first 

exponential gives the attenuation of a wave of unit amplitude originating at the 

source and then being reflected back to it by the surface at R^ and similarly 

for the second exponential term with reflection at R_. In any event, if we now 

introduce the dimensionless parameters 

&1= (R - Ri)/a :   «2 = (R2 - R)/a (12) 
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•we obtain finally 

4ttvWL.-$   i(,-W"8l + ,-«*•%, (13) 
1111    J=l,3  3 

J^na/nR 

The procedure described above is admittedly crude* but in fact we 

have obtained the same result by a much more careful treatment in which the 

shield was regarded as a section of a radial transmission line with proper 

care being given to asymptotic representations of the Beasel functions in the 

various domain, of order and argument which occur* We shall not reproduce that 

treatment here except to say that it shows that e*i. (13) is adequate provided 

5 ^"' 2 and — X% 20. This restriction on 5 is relaxed somewhat if R/a is larger, 
a 

an might be expected for actual synchrotrons. For example, if R/a.<•_ 100 then 

% "•;,  5 is suitable. However, as we shall see, the shield behaves very much as if 

it wsre infinite when 8 appreciably exceeds 2 and hence this is not a serious 

restriction. 

00H3RENT RADIATION 

Having obtained expressions for the power radiated in the nth harmonic 

by a single electron for each of the three cases, we now desire expressions for 

the power radiated by  say II electrons distributed in a specified way around the 

circular orbitJ '* *• '**}'    In particular, suppose the kth electron to have the 

angular coordinate Cp^ + Uft at time t. In the Fourier decomposition of the 

fields, the contribution of each electron thus contains a phase factor e~ ^* 

for the nth harmonic. It is then easily established that the power radiated in 

the nth harmonic by the N electrons is 
; N  -in<n  / 2 N 

>n / I    e  * /   = »n + ?n ^fi
coe n<<* - ^ (l4) 

The first term gives just the incoherent power loss. Since the spectrum of 

this radiation is mostly in the visible or ultraviolet region, it is of course 

vaffected by the presence of the shields - i.e. - when summed over n, it gives 

the usual results^*'*\2)»V3)»(U) in &ii  cases and we shall not discuss it further. 



Our Interest is in the second term, representing the coherent radiation, 

which we express as 

N(N + l) ?n f_ ^ tf?rn (15) n   » n n 
-where the fern factor fn is 

fn = m  + 1) L q
co! n*Pk - Vq) (16) 

Assuming that the electrons are symmetrically distributed about the same mean 

rn^lc, say zero, and that each electron is independent, we then have at once 

fn • tfcos  ncp S(cp) d cp)2 

where S(cp) dep is the probability that a given electron is found in the angular 

interval between cp and Cp + dep. For example, if the electrons are uniformly 

distributed over an angular interval oc , then 

S(cp) * i, "^-CP ^    £ 

= 0, otherwise 

and 

fn ' ^^ (17) 

As a second example, if the electrons are distributed according to a Gaussiun 

law, then 

S(cp) = Ji-c--* **> 

t. - •+** OB) 
In any event, the total coherent radiation is obtained by summing eq. (1$) 

over all harmonics and wc then have, for the three cases under consideration: 

I.  No Shielding 

•»> _ Pcoh = N' Z *£'   *„ (19) 

II.  Infinite Parallel Plate Shields 

Pcoh = N* S *f *n (20) 

III,  Finite Parallel Plate Shields 

?    -L. - ?c~°l  + p(at,t) (21") rcoh  rcoh ^ rCoh 
v x; 

(att) 
pcoh = N

' 
s prwu' *- <**> 

^ M2 v B(att) i 
n 
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Using the fact that PJJ1*--*-* n ,  oq. (19) has been evaluated for a 

uniform distribution by Schwinger^ '  and for a Gaussian distribution by Schiff* ' 

with the results 

Pcoh = N w  f- ( 4 >     (uniform) (23) 

Pcoh = "2 T ^U/3 | J^/3 [f (2/33 2  (Russian) 

It is seen that the results are not terribly sensitive to the detailed character 

of the form factor and henceforth wa shall consider only the uniform distributiont 

For this distribution, Schwinger^ ' has also evaluated eq. (20), but only under 

the asswnotion that -the size of the bunch is at least of the order of the plate 

separation (i.e., that W*  ?* a), with the result' ' 

(6) See the appendix for details. 

P^>=N2u£>4   -%. (2U) 
coh K     c    ftjd 

This restriction on the size of the bunch is not as serious as it seems at 

first glance, since for R<*- much less than a the shielding effects become very 

small and honce are not of significance. Additionally, examination of Schwinger's 

derivation loads one to the conclusion that eq. (2U) represents essentially an 

upper limit to the coherent radiation loss as «*• becomes smaller than a/Rr 

Presumably therefore eq. (2U) can be safely used until * becomes small enough 

that thu rosiilt is numerically equal to that of eq. (23), after which* of course, 

the latter equation can bo used. 

Finally, we calculate the correction term for finite shields from 

3q, (22), using oq. (17) and eq. (13): 

J=l,3 n=l 



For 8 J£ |, only tho J • 1 term contributes significantly, as is easily verified, 

so that, losing 

f '*   sinLffi^ ,,  rA  ^#^S <* - . (afi) (25) 

•we obtain 

-N2^   ^   [e-2*8! + e-2TT62J   s(n|4)      , 

This result is valid under the conditions R/a ?. 20 and J *?  8-2. Although 

this may seem to be a small domain of validity, it actually covers the most 

important region. The quantity S(TT~) is easily expressed in terms of known 

fv.netions^ '';    viz, 

(7) Gee, for examols, Jahnko and ',5mde, Tables of Functions (Dover Publications, 

New York, 19U3) P* 2 and p. 6. 

S(y) = | [c + log y ~ Gi(yjj (27) 

C = 0,577 . . . = Suler's constant 

so that the final result is extremely simple. 

As an examole, in Fig. 1, we present a plot of the coherent power 

loss, relative to the loss in the absence of shielding, against plate width for 

the special case 6^^ = 52 = 8/2 and for°<= .OU and R/a = £0. Although only 

a portion of the curve can be calculated  using (21), (23) and (26) we do 

know the limit points when 4 = 0 (no shielding) and 8 =0<> (infinite parallel 

plate shielding) and hence the remainder of the curve can be sketched in without 

serious error. The dotted portion in the figure has been so sketched, while 

tho solid portion has been calculated according to the above. 

In Fig. 2, 3 and U, we present the results in convenient form by 

introducing the parameter k(6, S,0''-) defined by 
a 

Pcoh s [} + k <«L. I *) + k (82, §,*)J d (28) 
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Values of 6vs R^a for constant k have been plotted for C* = .02, *0U> »06. 

Those curves enable one to estimate the width of shielding required tj reduce 

the coherent radiation loss to a given amount in units of the loss for infinite 

shields. As an example, given £ « 60, A • ,02 it might be desired to know the 
a 

plate width3 necessary to reduce the coherent power to twice Pccv. Selecting 

& = 8? so that k (£•,, 5, •''•)  -  k (5,,, S,«*) = 0.5 we find from the curves of Fi*. c •*• a        c    a 
2, 6-L =5 2 = 1.15 and hence from (12) 

R - Rn = R2 - R = 1.15a. 
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AFPSNDIX 

Because of the unavailability of reference (2), we give an outline of 

Schwin^er's derivation of eq.   (T:U).    Taking the indicated real part of (7) 

we have 

n R      a 3-1,8 i     n        2 

J<naP/wR       v 

r2 T2  \\ 
Jn-1 + Jn+^j 

-nuS^inB S /82J'2+     CJSP) r 2 
R      a 

where the argument of the Bessel functions is, 

7njR =   :jn3)2 - (jnR/a)2]  * 

Since "TR/a =».^1,   the harmonics involved in the radiation are sufficiently high 

that approximation formulas for EOSSJI functions of largo order are applicable 
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( p\ 
and we write•"/, placing P" 1, 

(8) G.N. Watson, Bessel Functions, (lhe MacMillan Oo., New York 19U5) P. 2U8. 

Jn   UP -  <>H/a)«  ) = J-   JHEZS Kl/3 fiJnB^ T 
(A-2) 

tecognizinr; that the contributions to Pn     are negligible unless 

n-'- (jrtf/a) ./jnit/a,  so that n must exceed jTTR/a by a rather large factor, we 

simplify the second terra of (A-l) accordingly and obtain 

_<*•) <£  AT. <v.4    /   P.      ,0v.3 
n = ou e2  4R       v 7*4    /^S.    r*Y,3>\  .   „2 

vn 
7 

whoro 
7. = jTR/a. 

J 
the total coherent nowor is then givsn by 

.2        „„ ^ _, ./«   2 

ooh R      3TTa    n=1        n,</2 J=1 3 -Jar JL  1/3^g^?'     2/3^ 
7,< n 

Replacing the sum over n by an integral, introducing x = 7..3/3n > we then have 

^ooh      w      R  ^ 2    na 

...:;4: 

J=1,3TJ      _ 
£sin2  t^j3/3x   «£) 

K 
1/3 (x) + ^2/3(x)j x dx 

(A-3) 

where, the correct upner lindt of the integral, 7^/3, which in large compared 

to unity, has been replaced b/ infinity. Now the main contribution to the 

"•ntegral comes for values of x in tho interval 0 5 x A; 1. In this interval the 

arguuont of the sin~ term in the integral is at least of order 

= *&*   £7T ...-.ft* ^7.</Y~ = j~- </iR/a >-»^ -r' Hence, if R*/a is at lea^t of order unity, the sin 
/p\ 

torra  can be replaced by its average value J, the known integrals   and sums 

performed and the result of eq. (2b) follows, 
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Without this restriction on R«</a, the evaluation of eq. (A-3) seems 

possible only numerically. However, we remark that if o< is small enough that 

the argument of the sin tern is rather small over the important range, then 

this term is considerably loss than its average value and hence, as indicated 

in the text, one errs only on the conservative side in extending Schwinger's 

result. Needless to say, an absolute upper limit is obtained by replacing the 

sin^ term by unity, thus giving tvrice the result of eq, (2U), but this seems 

unnecessarily conservative. 
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